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Abstract

Many biological data sets are prepared using one-shot sampling, in which each

individual organism is sampled at most once. Time series therefore do not follow

trajectories of individuals over time. However, samples collected at different times from

individuals grown under the same conditions share the same perturbations of the

biological processes, and hence behave as surrogates for multiple samples from a single

individual at different times. This implies the importance of growing individuals under

multiple conditions if one-shot sampling is used. This paper models the condition effect

explicitly by using condition-dependent nominal mRNA production amounts for each

gene, it quantifies the performance of network structure estimators both analytically

and numerically, and it illustrates the difficulty in network reconstruction under

one-shot sampling when the condition effect is absent. A case study of an Arabidopsis

circadian clock network model is also included.
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Introduction

Time series data is important for studying biological processes in organisms because of
the dynamic nature of the biological systems. Ideally it is desirable to use time series
with multi-shot sampling, where each individual (such as a plant, animal, or
microorganism) is sampled multiple times to produce the trajectory of the biological
process, as in Fig 1. Then the natural biological variations in different individuals can
be leveraged for statistical inference, and thus inference can be made even if the samples

are prepared under the same experimental condition.

Fig 1. Multi-shot sampling. Each plant is observed four times.

However, in many experiments multi-shot sampling is not possible. Due to stress
response of the organisms and/or the large amount of cell tissue required for accurate
measurements, the dynamics of the relevant biological process in an individual of the
organism cannot be observed at multiple times without interference. For example, in an
RNA-seq experiment an individual plant is often only sampled once in its entire life,
leaving the dynamics unobserved at other times. See the discussion section for a review
of literature on this subject. We call the resulting time series data, as illustrated in
Fig 2, a time series with one-shot sampling. Because the time series with one-shot
sampling do not follow the trajectories of the same individuals, they do not capture all
the correlations in the biological processes. For example, the trajectory of observations
on plants 1-2-3—4 and that on 1-6-7—4 in Fig 2 are statistically identical. The resulting
partial observation renders some common models for the biological system dynamics
inaccurate or even irrelevant.

Fig 2. One-shot sampling. Each plant is observed once.

To address this problem, instead of getting multi-shot time series of single
individuals, one can grow multiple individuals under each condition with a variety of
conditions, and get one-shot time series of the single conditions. The one-shot samples
from the same condition then become a surrogate for multi-shot samples for a single
individual, as illustrated in Fig 3. In essence, if we view the preparation condition of
each sample as being random, then there should be a positive correlation among

samples grown under the same condition. We call this correlation the condition
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variation effect. It is similar to the effect of biological variation of a single individual

sampled at different times, if such sampling were possible.

Fig 3. One-shot sampling with two different conditions.

For each condition, the one-shot samples at different times are also complemented by
biological replicates, which are samples from independent individuals taken at the same
time used to reduce technical and/or biological variations. See the discussion section for
a review on how replicates are used for biological inference. With a budget over the
number of samples, a balance must be kept between the number of conditions, the
number of sampling times and the number of replicates.

To illustrate and quantify the effect of one-shot sampling in biological inference, we
introduce a simple dynamic gene expression model with a condition variation effect. We
consider a hypothesis testing setting and model the dynamics of the gene expression
levels at different sampling times by a dynamic Bayesian network (DBN), where the
randomness comes from nominal (or basal) biological and condition variations for each
gene. The nominal condition-dependent variation of gene j is the same for all plants in
that condition and the remaining variation is biological and is independent across the
individuals in the condition. In contrast to GeneNetWeaver [1], where the effect of a
condition is modeled by a random perturbation to the network coefficients, in our model
the condition effect is characterized by correlation in the nominal variation terms of the
dynamics. Note in both models samples from different individuals under the same
condition are statistically independent given the randomness associated with the
condition.

The contributions of this paper are threefold.

1. A composite hypothesis testing problem on the gene regulatory network is
formulated and a gene expression dynamic model that explicitly captures the

per-gene condition effect and the gene regulatory interactions is proposed.

2. The performance of gene regulatory network structure estimators is analyzed for
both multi-shot and one-shot sampling, with focus on two algorithms.
Furthermore, single-gene and multi-gene simulation results indicate that

multiple-condition experiments can somewhat mitigate the shortcomings of
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one-shot sampling.

3. The difficulty of network reconstruction under one-shot sampling with no
condition effect is illustrated. This difficulty connects network analysis and
differential expression analysis, two common tasks in large-scale genomics studies,
in the sense that the part of network involving non-differentially expressed genes

may be harder to reconstruct.

The simulation code for generating the figures is available at [2].

Materials and Methods

Stochastic model of time-series samples

This section formulates the hypothesis testing problem of learning the structure of the
gene regulatory network (GRN) from gene expression data with one-shot or multi-shot
sampling. The GRN is characterized by an unknown adjacency matrix. Given the GRN,
a dynamic Bayesian network model is used for the gene expression evolution with time.
Two parameters o, ; and oy, ; are used for each gene j, with the former explicitly

capturing the condition variation effect and the latter capturing the biological variation

level.

Notation

For any positive integer n, let [n] = {1,2,...,n}. We use (f(z)),7 to denote the
family of elements in the set {f(z): € Z} indexed by the index set Z. The indicator
function on a statement or a set P is denoted by 1p. The n-by-n identity matrix is

denoted by I,,. The transpose of matrix A is denoted by A*.

Model for gene regulatory network topology

Let n be the number of genes and let A € A C R"*" be the unknown adjacency matrix
of the GRN. The sign of the entry a;; of A for i # j indicates the type of regulation of j
by ¢, and the absolute value the strength of the regulation. A zero entry a;; = 0 with
1 # j indicates no regulation of j by i. The diagonal of A characterizes protein

concentration passed from the previous time, protein degradation, and gene
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autoregulation. Let & = {S1,52,...,85s/} be a finite set of network structures and let
D be a mapping from A to S; D(A) represents the network structure of an adjacency
matrix A. Then A is partitioned by the associated network structures. Fix a loss
function I: S2 — R. Let Y € Y be the random observation and let §: ) — S be an
estimator for the structure. The performance of an estimator is evaluated by the
expected loss EI(D(A),d(Y)). This is a hypothesis testing problem with composite
hypotheses {Dil(S): Ses } This paper considers network reconstruction up to
regulation type with D(A) = (sgn(AZ-j))(i’j)e[n}27 where sgn(s) = 1,50y — L{s<0}- In
other words, the ternary value of the edge signs (positive, negative, or no edge) are to
be recovered. A structure S has the form S = (Sij)(i,j)e[nP with S;; € {0,1, -1}, and it
can be interpreted as a directed graph with possible self-loops. Some examples of loss

functions are as follows.

e Ternary false discovery rate (FDR)

iz X Lsy=sy,70)

lFDR(Sa Sl) =1 n n
Dim1 2j=1 Lisy, 20}

e Ternary false negative rate (FNR)

. Z?:l Z?:l 1{51:;':51{].750}
Z?:l Z?:l ]]'{Sij;ﬁO}

lenr(S,8") =1
e Ternary false positive rate (FPR)

ZFPR(Sv S/) =1- n n
Zi:l Zj:l I{Su:O}

e Ternary error rate

I8(5.5) = 5 33" Uis, s

i=1 j=1
Note the FDR and the FNR are well-defined when S’ and S contains nonzero elements,
respectively, and the FPR is well-defined when S contains zeros. The error rate is
always well-defined. It can be seen that Ippr (S, S’) = lpnr(5’,5). Also if S does not
contain zeros then lpNg (S, S’) = Ig(S,S). Similarly if S” does not contain zeros then

lrpr(S,S") = 1g(S,S"). As an example, for a random guessing algorithm with
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probabilities of Si; = 0,1, —1 being 1 —¢,¢/2, /2 and a network prior with probabilities

of S;; =0,1,—1 being 1 —p,p/2,p/2, lrpr = 1 —p/2, lpxr = 1 — ¢/2, and lppr = ¢.

Model for gene expression dynamics

This section models the gene expression dynamics of individuals by a dynamic Bayesian
networks with parameters o, ; and oy, ; as the condition variation level and biological
variation level for gene j.

Let K, T and C be the number of individuals, sampling times, and conditions,
respectively. Let X¥(t) € R be the expression level of gene j € [n] in individual k € [K]
at time ¢ € [T], and let ¢ € [C] be the label that indicates the condition for individual
k. Here we assume X J’“(t) represents both the mRNA abundance and the protein
concentration. The gene expression levels evolve according to the Gaussian linear model
(GLM) with initial condition XJ’»C (0) =0 for any j € [n], k € [K] and the following
recursion (note the values of X can be the expression levels after a logarithm transform,

in which case lowly expressed genes have negative X values)

Xjk(t + 1) = ZXZ]C(t)A” + aco,jWC’“

0,j
i=1

(t+1) + abi,jWk’;J(t +1), (1)

for j € [n], k € [K],and t € {0,1,...,T — 1}, where (W¢

20 ) @inercixmxm 9

(ng k(t)) are collections of independent standard Gaussian random
' (G:k:t) €[n] X [K]x[T]

variables that are used to drive the dynamics. Here the last two terms in (1) denote the
condition variation and biological variation, respectively. To write (1) in matrix form,
be K-by-n matrices,

we let X (t) = (XF(t)) j and W(t) = (Wr(t))

(k.g)€[K]x[n (k.3)€[K]x[n]
where WF(t) = Oco,iWea ; (1) + Ubi,jwéi,j (t). Then
X(t+1)=X(t)A+W(t+1) (2)

and hence

t

X(t) =) WA, (3)

=1
The variable Wf (t) is the nominal mRNA production amount for target gene j,

individual k at time t that would occur in the absence of regulation by other genes.
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Model for sampling method

In this section two sampling methods are described: one-shot sampling and multi-shot
sampling. For simplicity, throughout this paper we consider a full factorial design with
CRT samples obtained under C' conditions, R replicates and T sampling times, denoted
by Y = (Y"") (. . heicix (rix(r]- 10 other words, instead of X we observe Y, a noisy
and possibly partial observation of X. Here the triple index for each sample indicates
the condition, replicate, and time. As we will see in the discussion at the end of this
section, for either sampling method, the biological variation level oy; ; can be reduced

by combining multiple individuals to form a single sample.

Multi-shot sampling Assume an individual can be sampled multiple times. This
sampling model corresponds to K = CR and ¢, = [£] € [C] for all k € [K].
Equivalently, multi-index (¢, r) can be used to determine the individual instead of k for

X and W with ¢ denoting the condition and r the replicate. Then (1) for multi-shot

sampling can be rewritten as

n
X;’T(t + 1) = ZX;’r(t)Aij + Uco,chCoJ‘(t + 1) + O'bi,lefi’jnj(t + 1),

i=1

and the observation for condition ¢, replicate r and time ¢ is

ijc,nt _ ch,r(t) + Tro ‘Z(;,r,t7 (4)

$Jg

with (Z§"*

j ) Gremt)en] X [CIx[RIX[T] being a collection of independent standard Gaussian

random variables modeling the observation noise, and oy ; is the technical variance
level of gene j. We see that for fixed ¢ and r the observations at different times are from
the same individual with the multi-index (¢,r). As a result, with multi-shot sampling Y

is a noisy full observation of X.

One-shot sampling Assume an individual can be sampled only once. This model
corresponds to K = CRT and ¢, = [#=] € [C] for all k € [K]. Equivalently, with
multi-index (e, r, s) denoting the condition, the replicate, and the target sampling time,

the evolution (1) for one-shot sampling can be rewritten as
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X;,r,s(t +1)= Z XPT5 (1) Ay + OcojWeo ;j(t+1) + abiﬁngﬁs(t +1),

i=1

and the observation is

YTt = XPT () + ove 27 (5)

Again o ; is the observation noise level of gene j and the Z’s are independent standard
Gaussian random variables. Note that for fixed ¢ and r the observations at different
times are from different individuals because the triple indices are different. Hence with
one-shot sampling, Y is a noisy partial observation of X (to see this, note for gene 1
and the individual indexed by condition 1, replicate 1, and target sampling time 1,

X 11 ’1’1(1), which is the expression level at time 1, is observed through Yll’l’1 but

X["11(2), which is the expression level at time 2, is not observed).

Discussion on sources of variance The oc, ;W ;(t) terms measure the
condition-dependent nominal production level as global driving noise terms that are
shared across individuals under the same condition. They are independent and
identically distributed (i.i.d.) across conditions. The op; ;W ;(t) terms measure the

biological nominal production level of individuals as local driving noise terms. They are

i.i.d. across individuals. The oy ; Z;’T’ terms measure the technical variation of samples

as additive observational noise terms that are not in the evolution of X. They are i.i.d.

across samples. We then have the following observations.

1. If the samples of the individuals under many different conditions are averaged and

treated as a single sample, then effectively oo j, oni; and oye,; are reduced.

2. If the samples of R individuals under same conditions (biological replicates) are
averaged and treated as a single sample, then effectively O'%i) j and Ufe’j are

reduced by a factor of R while 020’ ; remains unchanged.

3. If material from multiple individuals grown under the same condition is combined
into a composite sample before measuring, then effectively oy, ; is reduced while

Oco,; and ote ; remain unchanged. Note for microorganisms a sample may consist
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of millions of individuals and the biological variation is practically eliminated

(omi,j ~ 0).

4. If the samples from same individuals (technical replicates) are averaged and
treated as a single sample, then effectively oy ; is reduced while o, ; and o ;

remain unchanged.

Note this sampling model with hierarchical driving and observational noises can also be
used for single-cell RNA sequencing (scRNAseq) in addition to bulk RNA sequencing
and microarray experiments. For scRNAseq, 0, ; can model the tissue-dependent

variation (the global effect) and oy, ; the per-cell variation (the local effect).

Results

Performance evaluation of network structure estimators

This section studies the performance of network structure estimators with multi-shot
and one-shot sampling data. First, general properties of the two sampling methods are
obtained. Then two algorithms, the generalized likelihood-ratio test (GLRT) and the
basic sparse linear regression (BSLR), are studied. The former is a standard decision
rule for composite hypothesis testing problems and is shown to have some properties
but is computationally infeasible for even a small number of genes. The latter is an
algorithm based on linear regression, and is feasible for a moderate number of genes.
Finally simulation results for a single-gene network with GLRT and for a multi-gene

network with BSLR are shown.

General properties

By (3), (4) and (5), the samples Y are jointly Gaussian with zero mean. The covariance
of the random tensor Y is derived under the two sampling methods in the following.
Under multi-shot sampling, the samples under different conditions are independent
and hence uncorrelated. Consider Y™ and YC’T/’t/, which are two samples under the
same condition and collected at times ¢ and #'. The covariance matrix between Y7
and Y is the sum of the covariance matrices of their common variations at times 7

for 1 <7 < ¢ At' multiplied by (A*)*~" on the left and A* =7 on the right, plus
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. . . _ . 2 2 2
covariance for the observation noise. Let ¥, = diag(og, 1,025, 95+ -+ 0e0 n);
— g 2 2 2 — 2 2 2
Y = diag(oi; 1, pi 0y - - -5 O p)s a0d Epe = diag(of, 1, 0% 2, - -+, 04 ,)- Then the
covariance matrix of the variations is X, + Xy; if the two samples are from the same

individual (i.e., r = '), and X, otherwise. This yields:

E[(yc,r,t)*yc',r',t']

Z:ZI(A*)t_T(ECO + Ebi)At_T + Ete lf (Cv T, t) = (C/a T/a t/)v

S (AT (Seo + i) AV T if (c,r) = (¢/,r'") and t # ¢/,
Zif;(A*)t_TECOAt/_T if c=c and r # 1/,

0 if c# (.

Under one-shot sampling the only difference compared with multi-shot sampling is

So

E[(Yc,r,t)*yc/,r/,t/} (6)
St (AT (Beo + Bu) AT 4 B (e ) = (¢, 1),

— EtT/:i (A*)t_TZCOAt/_T if c=¢ and (r,t) # (', 1),
0 if c#c.

For any fixed network structure estimator:

1. If ¥y; =0 and C, R and T are fixed, the joint distribution of the data is the same
for both types of sampling. So the performance of the estimator would be the

same for multi-shot and one-shot sampling.

2. If ¥y; = 0 and . = 0 (no observation noise) and C, T are fixed, the joint
distribution of the data is the same for both types of sampling (as noted in item 1)

and any replicates beyond the first are identical to the first. So the performance of

the estimator can be obtained even if all replicates beyond the first are discarded.
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3. Under multi-shot sampling, when C, R, T are fixed with R = 1, the joint
distribution of the data depends on Y., and X; only through their sum. So the
performance of the estimator would be the same for all ¥., and Xy; such that

Yo + 2 is the same.

4. In the homogeneous gene case wWith 0co j = Oco, Obi,j = Obi, Ote,j = Ote for all j

with o}, + of; + of, > 0, suppose that the estimator § is based on replicate

averages y = (ycvt)(c,t)e[C]X[T] with y*t = & Zil Yert and that § is

scale-invariant (i.e., 6(Y) = 0(coY’) for any ¢y # 0 and Y'). Then under multi-shot

sampling, §’s performance depends on o, b, ote and R only through the ratio

2
__ o/R _ : 4l 5
Py o Under one-shot sampling, the estimator’s performance depends
2 2
o /R Ieo
oTron mron R 20 GTIoeTR

Ol O¢o, Obi, Ote and R only through the ratios

(through the latter only when o2 + o2 > 0).

To see 4), recall from observation 2 above that averaging reduces the variance of the
biological variation and that of the observation noise by a factor of R due to
independence, but preserves the condition variation because it is identical across
replicates. Hence the variance of the driving noise in the averages is 02, + of;/R and
the variance of the observation noise of the averages is o2, /R. Then the averages are
essentially single-replicate data, and the performance under multi-shot sampling
depends only on the ratio of the new driving noise variance to the new observational
noise variance. For one-shot sampling the ratio between the condition variation and the
biological variation also matters for the single-replicate data when the condition

variation and the biological variation are not both zero, so the performance also

0_2

depends on m

Network reconstruction algorithms

In this section we introduce GLRT and BSLR. GLRT is a standard choice in composite
hypothesis testing setting. We observe some properties for GLRT under one-shot and
multi-shot sampling. However, GLRT involves optimizing the likelihood over the entire
parameter space, which grows exponentially with the square of the number of genes.
Hence GLRT is hard to compute for multiple-gene network reconstruction. In contrast,

BSLR is an intuitive algorithm based on linear regression, and will be shown in
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simulations to perform reasonably well for multi-gene scenarios.

GLRT The GLRT (see, e.g., page 38, Chapter ILE in [3]) is given by
8(y) = D(Anw(y)), where Ay, (y) is the maximum-likelihood estimate for A based on

the covariance of Y given the observation Y = y.

Proposition 1. GLRT (with the knowledge of ¥.o, ;i and ¥i.) has the following

properties.

1. For a fived 02, under multi-shot sampling with Yt = 0 (no observation noise),
Ocoj = Ocos Obij = Obi, and o2 + o, = o2, the performance of GLRT for sign

estimation is the same for all (R, 0o, 0ni) excluding (R > 2,01 = 0).

2. Under one-shot sampling and 3., = 0, the log likelihood of the data as a function
of A (i.e. the log likelihood function) is invariant with respect to replacing A by
—A. So, for the single-gene n =1 case, the log likelihood function is an even

function of A, and thus the GLRT will do no better than random guessing.

For 2 it suffices to notice in (6) the covariance is invariant with respect to changing

A to —A. A proof of 1 is given below.

Proof of 1). We first prove it for the case of a single gene with constant 7" and a
constant number of individuals, CR. To do that we need to look at the likelihood
function closely.

We may assume o2 = 1. Because the trajectories for different conditions are
independent (for given parameters (A, c2,))), we shall first consider the case with a
single condition; i.e., C' = 1. There are hence R trajectories of length 7". Then the

covariance matrix of the length- R driving vector used at time ¢ for the trajectories is

Cov(W(t)) = (1 —02)Ig + 02 Jr =: .

When o, > 0, ¥ is not the identity matrix multiplied by some constant; i.e., the noise
vector W (t) is colored across replicates. It can be checked when o, < 1 (i.e., op; > 0)
the matrix X is positive definite. Then there exists an orthogonal matrix U and a
diagonal matrix A with positive diagonal elements such that 3 = UAU*. Let

27Y2 = UATY2U* and let
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X(t)=2"12X(1),

W) =S 2w ()

for all t € [T]. Then the trajectories for the R replicates in a single condition become:

X(t+1)=XHA+W(Et+1)

It can be checked that after the linear transformation by ¥~1/2

, which does not depend

on A, the new driving vectors are white (i.e., Cov(W (t)) = Ig). It follows that the

distribution of X|(A,02) is the same as the distribution of X|(A,0) (i.e. oeo = 0).

Therefore, for @ = (2"(t))(,. 1y e[r)x 77> If We let Lx (z[A4, 02,) denote the likelihood of

X = x for parameters A, o2, then

co?’

Lx(z|A,02,) = L5 (Z|A,02,)d(R,T,02,) = Lx(Z|A,0)d(R, T, 0?,),

» ¥ co )y~ co

where d(R,T,02,) = (det £)~7/2 is a function of R, T and 02,, and Z(t) = ¥~/ 2x(t).

co?

Now consider the likelihood function for all C'RT samples with general C'. It is the

product of C' likelihood functions for the samples prepared under the C' different

conditions. It is thus equal to d(R,T,02)¢ times the likelihood of the transformed

expression levels T, which is the likelihood function for 0., = 0 and a total of CRT

samples. The form of the product depends on C' and R only through C'R, because

under the transformation, all C'R trajectories are independent. Hence, for fixed

A 0%, C, R, T the distribution of the maximum likelihood estimate of A, when the

samples are generated using a given o, > 0 (so the R individuals under each condition

are correlated) and the likelihood function also uses o2

co?

of the maximum likelihood estimate of A when o, = 0 (in which case the CR

individual trajectories are i.i.d.). Formally,

Eo., l(D(A),6(Y)) = Eo, I(D(A), D(argj/nax Lx(X|A',02,)))

=E,. I(D(A),D(argmax Lx (X|A4’,0)))
A/

is the same as the distribution
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= Eo(D(A), Darg max L (X |4',0)))

=Ko l(D(A),5(Y)),

where E, . denotes that the condition variation level of the random elements X and Y

Oco
is 02,. The above fails if 0., = 1 (i.e., op; = 0) and R > 2 because then X is singular. It
also fails if o, and op; are unknown to the GLRT.

For the general model with multiple genes, if 0, ; is the same for each gene j, 1)
holds as before — for the proof, apply left multiplication by Y~3% for each gene, time,
and condition to all R samples in the condition. View (2) as an update equation for an

R x n matrix for each group of R samples in one condition. One column of length R per

gene, and one row per sample. O]

BSLR In BSLR, replicates are averaged and the average gene expression levels at
different times under different conditions are fitted in a linear regression model with
best-subset sparse model selection, followed by a Granger causality test to eliminate the
false discoveries. BSLR is similar to other two-stage linear regression—based network
reconstruction algorithms, notably oCSE [4] and CaSPIAN |[5]. Both oCSE and
CaSPTAN use greedy algorithms in the first build-up stage, making them more suitable
for large-scale problems. In contrast, BSLR uses best subset selection, which is
conceptually simpler but computationally expensive for large n. For the tear-down stage
both BSLR and CaSPIAN use the Granger causality test, while oCSE uses a

permutation test.

Build-up stage In the first stage BSLR finds potential regulatory interactions
using a linear regression model. Let Y7 (t) = + Zi{:l Yent and let

Y(t) = (ch(t))(c,j)e[C]x[n] denote the C-by-n matrix. Let

and

October 21, 2019 14/32



Y (T -1)

For each target gene j € [n], BSLR solves the following best subset selection problem

with a subset size k < n:

H}Xinimize |W;(1) —¥(0)A.; —d;¥;(0) — bjl||§
RN R ]

subject to [|A.jllo <k and Aj; = 0.

Denote the solution by (A*,b*,d*). The output of the first stage is then A*.
A naive algorithm to solve the above optimization has a computational complexity

of O(n**1) for fixed k as n — oo. Faster near-optimal alternatives exist [6].

Tear-down stage The second stage is the same as that of CaSPIAN. For each

J € [n] and each i € supp(AY;), let the unrestricted residual sum of squares be

RSSy = [|;(1) — W(0)A% — djW;(0) — bi1])3

and the restricted residual sum of squares

supp(4.;) = supp(AZ;)\{i}}
The F-statistic is given by

RSS, — RSS,

F=Res.jcr—1-k-2

The potential parent ¢ of j is removed in the tear-down stage if the p-value of the
F-statistic with degrees of freedom (1, C(T — 1) — k — 2) is above the preset significance
level (e.g., 0.05). Note the tests are done for all parents in A.; simultaneously; both the

restricted and the unrestricted models contain the other potential parents regardless of
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the results of the tests on them.

Simulations on single-gene network reconstruction

The GLM is used to simulate one-shot sampling data with a single gene. The goal is to
determine the type of autoregulation of the single gene (activation or repression). The
protein concentration passed from the previous time is ignored so the type of
autoregulation is represented by the sign of the scalar A. In order to compare one-shot
and multi-shot sampling, we view the main expense to be proportional to the number of
samples to prepare as opposed to the number of individuals to grow. We thus fix a total
budget of C RT = 180 samples and consider full factorial design with C' and R varying
with CR = 30, and T' = 6 with 10000 simulations. We assume the knowledge of the
existence of the autoregulation (i.e., A # 0), in which case the FDR, the FNR and the
error rate coincide, so we only look at error rates. The results are plotted in Fig 4. The
four plots on the left are for one-shot sampling and the four on the right are for
multi-shot sampling. Consider the homogeneous case with ¢, j = 0co, Obi,j = Obi and
o2

Ote,j = Ot for all j and let v = s be the fraction of condition variation in the
co bi

driving noise. For each plot the observed probability of sign (of A) error is shown for
~v €{0,0.2,0.4,0.6,0.8,1.0} and for R ranging over the divisors of 30 from smallest to
largest. Figs 4a—4d show the performance for the GLRT algorithm assuming no
observation noise (o, = 0), known v and known total driving variation

0? =02 + o}, = 1. Figs 4e-4h show the performance for the GLRT algorithm assuming
known driving noise level ¢ = 1 and observational noise level oy, = 1, while both v and

A are unknown to the algorithm.

Fig 4. Performance of the GLRT in single-gene sign recovery with different
numbers of replicates.

The numerical simulations reflect the following observations implied by the
analytical model.

1. Under one-shot sampling, when v = 0, the GLRT is equivalent to random

guessing.

2. The GLRT performs the same under one-shot and multi-shot sampling when

v =1

October 21, 2019

16/32

330

332

333

335

336

338

339

341

342

345

348

351

352

357



3. Under no observation noise, the performance for multi-shot sampling is the same

for all v < 1.
Some empirical observations are in order.

1. Multi-shot sampling outperforms one-shot sampling (unless v = 1, where they

have the same error probability).

2. For one-shot sampling, the performance improves as y increases. Regarding the
number of replicates R per condition, if 4 = 0.2 (small condition effect), a medium
number of replicates (2 to 5) outperforms the single replicate strategy. For larger

v, one replicate per condition is the best.

3. For multi-shot sampling, performance worsens as - increases. One replicate per

condition (R = 1) is best.

4. Comparing Figs 4a-4d vs. Figs 4e—4h, we observe that the performance degrades
with the addition of observation noise, though for moderate noise (o, = 1.0) the
effect of observation noise on the sign error is not large. Also, the effect of the

algorithm not knowing ~ is not large.

Simulations on multi-gene network reconstruction

This subsection studies the case when multiple genes interact through the GRN. The
goal is to compare one-shot vs. multi-shot sampling for BSLR under a variety of
scenarios, including different homogeneous v values, varying number of replicates,
varying observation noise level, and heterogeneous  values.

The performance evaluation for multi-gene network reconstruction is trickier than
the single-gene case because of the many degrees of freedom introduced by the number
of genes. First, the network adjacency matrix A is now an n-by-n matrix. While some
notion of “size” of A (like the spectral radius or the matrix norm) may be important,
potentially every entry of A may affect the reconstruction result. So instead of fixing a
ground truth A as in Fig 4, we fix a prior distribution of A with split Gaussian prior
described in Appendix S2 (note we assume the knowledge of no autoregulation), and
choose A i.i.d. from the prior distribution with d.x = 3. Second, because the prior of

A can be subject to sparsity constraints and thus far from a uniform distribution,
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multiple loss functions that are more meaningful than the ternary error rate can be
considered for performance. So we consider ternary FDR, ternary FNR and ternary
FPR for the multi-gene case. In the simulations we have 20 genes and dy,ax = 3 with
in-degree uniformly distributed over {0, 1,...,dmnax}, S0 the average in-degree is 1.5.

The number of sampling times is 7= 6 and C'R = 30.

Varying v, R and oy In this set of simulations we fix the observation noise level
and vary the number of replicates R and the condition correlation coefficient ~. The
performance of BSLR under one-shot and multi-shot sampling is shown in Fig 5

(0te = 0) and Fig 6 (ot = 1). Note BSLR does not apply to a single condition with 30
replicates due to the constraint that the degrees of freedom C(T — 1) — k — 2 in the

second stage must be at least 1.

Fig 5. Performance of the BSLR in multi-gene network reconstruction with
different numbers of replicates, oy, = 0.

Fig 6. Performance of the BSLR in multi-gene network reconstruction with
different numbers of replicates, o, = 1.

For one-shot sampling, when v = 0, we see in both Fig 5 and Fig 6 that BSLR is no

different from random guessing, with an FDR close to 1 — %11—5’ ~ 0.96 and an FNR and
an FPR such that lpng + %ZFPR ~ 1 (recall the example of random guessing at the end
of the section of the model for gene regulatory network topology). When v = 1, BSLR
performs similarly with one-shot or multi-shot sampling, which is consistent with
property 1 in the section on general properties. As ~ increases from 0 to 1, under
one-shot sampling for a fixed number of replicates, the FDR and FNR reduce greatly.
For example, as v increases from 0.2 to 1, the FDR for single replicate under one-shot
sampling decreases from 0.74 to 0.31 with noiseless data (Fig 5), and from 0.79 to 0.36
with noisy data (Fig 6), while the FNR decreases from 0.70 to 0.00 with noiseless data,
and from 0.78 to 0.04 with noisy data. This decrease is more pronounced for smaller
number of replicates. Note the trend of the performance of BSLR under one-shot
sampling as a function of R and -y is very similar to that of GLRT in Figs 4e and 4g

For multi-shot sampling, in the noiseless case, we see all three losses are invariant

with respect to different ~y for fixed R, which is consistent with property 4 in the section
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on general properties because BSLR is an average-based scale-invariant algorithm (note

CR is a constant so for different R the performance is different due to the change in C).

In the noisy case, the FDR and FNR slightly decrease as ~ increases, which is an
opposite trend compared with Figs 4f and 4h.

In summary, the main conclusions from Figs 5 and 6 are the following.

e The performance of BSLR under multi-shot sampling is consistently better than

that under one-shot sampling.

e The performance of BSLR under one-shot sampling varies with -, from random

guessing performance at v = 0 to the same performance as multi-shot sampling at

v=1.

e By comparing Fig 5 with Fig 6, we see the observation noise of o¢, = 1 has only a

small effect on the performance with the two sampling methods.

Reduced number of directly differentially expressed genes In the above

simulations we have assumed all genes are equally directly differentially expressed. In
other words, we took afo’j + cr%i, j="Tland oo j = 0co for all j. To test what happens
more generally, we conducted simulations such that only half of the genes are directly

differentially expressed genes (DDEGs), while the other half are non-DDEGs. To do so,

2

we assign afo,j = 0.8 and agi’j =0.2for 1 <j <10, and og, ;

=0 and agi’j =1 for

11 < 7 <£20. The results for R = 3 are pictured in Fig 7. We see that with one-shot
sampling the edges coming out of the DDEGs are reconstructed with lower FDR and
FNR compared to those coming out of non-DDEGs. However, under one-shot sampling,
even the edges from the non-DDEGs in Fig 7 are recovered with much lower FDR and
FNR, as compared to one-shot sampling in Fig 6 with v =0 and R = 3 (both FDR and
FNR are around 0.95). The results indicate that the performance of BSLR under

one-shot sampling benefits from diversity in conditions even when not all genes are

directly differentially expressed.

Fig 7. Performance of BSLR for heterogeneous o, ; with o, = 1.

We summarize the simulations performed in Table 1. Note the last row is a summary

of Table 2 in the Discussion section.
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result  algorithm setting key observations

e MS < OS

¢ OS =RG at v =0*

e OS=MSaty=1*

e OS decreases with y

e MS without noise is the same for R=1or vy < 1*
e MS with noise increases with ~y

e optimal R for OS depends on

e noise and unknown ~ slightly affects performance

e MS < OS
multi-gene, e OS=RGaty=0
Fig 5 BSLR e OS=MSaty=1*"
noiseless e OS decreases with
e MS constant with v for given R*

e MS < OS
multi-gene, e OS=RGatvy=0
Fig 6 BSLR e OS=MSaty=1*"
noisy e OS decreases with y
e noise slightly affects performance

Fig 4 GLRT single-gene

multi-gene, e DDEG regulation is better recovered
Fig 7 BSLR heterogeneous v e non-DDEG regulation is recovered better
in the presence of DDEGs

e MS < OS with biologically plausible data
Table 2 BSLR Locke model e OS is better with replicate averaging
e MS is better without replicate averaging

Table 1. Summary of simulation results. OS and MS stand for the losses of one-shot sampling and multi-shot sampling.
RG stands for random guessing. * indicates mathematically proved results.
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Information limitation for reconstruction under one shot

sampling without condition effect

In the previous section it is shown that both GLRT and BSLR are close to random
guessing under one-shot sampling when o, ; = 0 for all j. This leads us to the following
question: is the network reconstruction with no condition effect (oo ; = 0 for all j)
information theoretically possible? In this section we examine this question under
general estimator-independent settings. Note in this case the trajectories of all
individuals are independent given A regardless of (cy) ke[K]-

As we have seen in Proposition 1 part 2, when Y., = 0, the distribution of the
observed data Y is invariant under adjacency matrix A or —A, implying any estimator
will have a sign error probability no better than random guessing for the average or
worst case over A and —A. Here, instead of sign error probability, we consider the
estimation for A itself.

The extreme case with infinite number of samples available for network
reconstruction is considered to give a lower bound on the accuracy for the finite data
case. Note that with infinite number of samples a sufficient statistic for the estimation
of the parameter A is the marginal distributions of X! (¢); no information on the
correlation of (X 1(t)) te[T) ACTOSS time t can be obtained. A similar observation is made
in [7] for sampling stochastic differential equations.

We first consider the transient case with X (0) = 0 as stated in the section of the
model for gene expression dynamics. With infinite data the covariance matrix
% & Cov(X(t)) = SoL_, (A*)!"TA'™7 can be recovered for ¢ € [T]. Now we want to
solve A from (X¢),¢(7)- As a special case, if A*A = pI, (ie., p~1/2 A is orthogonal) then
we will have ¥, = Z:_:lo p" 1. As aresult, given (£;),¢ ) in the above form, no more
information of A can be obtained other than p~'/2A being orthogonal, with

n(n—1)
2

degrees of freedom remaining. In general case it is not clear if A can be recovered from
(Et)te[T]'

Now consider the case where X* is in steady state; i.e., X(0) is random such that
Cov(X (t)) is invariant with ¢. With infinite amount of data we can get the covariance
matrix X, which satisfies > = A*X A + I. Since covariance matrices are symmetric, we

equations for n? variables in A. Thus A is in general not determined by the

(n+1)
have =
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equation uniquely. In fact, note that X is positive definite. Then by eigendecomposition

¥ = QAQ*, where @ is an orthogonal matrix and A the diagonal matrix of the

eigenvalues of 3. Then A = (Q*AQ)*A(Q*AQ) + I. Let B = QAQ*. Then A = B*AB.

By the Gram—Schmidt process, B can be determined with @ degrees of freedom.
So the network cannot be recovered from the stationary covariance matrix.

In summary, the recovery of the matrix A is generally not possible in the stationary
case, and also not possible in the transient case at least when A is orthogonal. To

reconstruct A, further constraints (like sparsity) may be required.

Discussion

One-shot sampling in the literature

This section reviews the sampling procedures reported in several papers measuring gene
expression levels in biological organisms with samples collected at different times to
form time series data. In all cases, the sampling is one-shot, in the sense that a single

plant or cell is only sampled at one time.

Microorganisms

In the transcriptional network inference challenge from DREAMS5 [8], three compendia

of biological data sets were provided based on microorganisms (E. coli, S. aureus, and S.

cerevisiae), and some of the data corresponded to different sampling times in a time
series. Being based on microorganisms, the expression level measurements involved

multiple individuals per sample, a form of one-shot sampling.

Plants

In [9], the plants are exposed to nitrate, which serves as a synchronizing event, and
samples are taken from three to twenty minutes after the synchronizing event. The
statement “... each replicate is independent of all microarrays preceding and following
in time” suggests the experiments are based on one-shot sampling. In contrast, the
state-space model with correlation between transcription factors in an earlier time and

the regulated genes in a later time fits multi-shot sampling. [10] studied the gene
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expression difference between leaves at different developmental stages in rice. The 12th,
11th and 10th leaf blades were collected every 3 days for 15 days starting from the day
of the emergence of the 12th leaves. While a single plant could provide multiple samples,
namely three different leaves at a given sampling time, no plant was sampled at two

different times. Thus, from the standpoint of producing time series data, the sampling
in this paper was one-shot sampling. [11] devised the phenol-sodium dodecyl sulfate

(SDS) method for isolating total RNA from Arabidopsis. It reports the relative level of
mRNA of several genes for five time points ranging up to six hours after exposure to a
synchronizing event, namely being sprayed by a hormone trans-zeatin. The samples

were taken from the leaves of plants. It is not clear from the paper whether the samples

were collected from different leaves of the same plant, or from leaves of different plants.

Animals

[12] likely used one-shot sampling for their —24, 60, 120, 168 hour time series data from
mouse skeletal muscle C2C12 cells without specifying whether the samples are all taken
from different individuals. [13] produced time series data by extracting cells from a
human, seeding the cells on plates, and producing samples in triplicate, at a series of six
times, for each of five conditions. Multiple cells are used for each sample with different
sets of cells being used for different samples, so this is an example of one-shot sampling
of in wvitro experiment in the sense that each plate of cells is one individual. The use of
(five) multiple conditions can serve as a surrogate for a single individual set of cells to
gain the effect of multi-shot sampling. Similarly, the data sets produced by [14]
involving the plating of HeLa S3 cells can be classified as one-shot samples because
different samples are made from different sets of individual cells. Interestingly, the
samples are prepared under one set of conditions, so the use of different conditions is
not adopted as a surrogate for multi-shot sampling. However, a particular line of cells
was selected (HeLa S3) for which cells can be highly synchronized. Also, the paper does

not attempt to determine causal interactions.

In silico

The three in silico benchmark suites described in the GeneNetWeaver paper on

performance profiling of network inference methods [1] consisted of steady state, and
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therefore one-shot, samples from dynamical models. However, the GeneNet Weaver

software can be used to generate multi-shot time series data, and some of that was

included in the network inference challenges, DREAM3, DREAM4, and DREAMS |[1, 8].

On biological replicates

In many biological experiments, independent biological replicates are used to reduce the
variation in the measurements and to consequently increase the power of the statistical
tests. It turns out that both how to use biological replicates, and the power of biological
replicates, depend on whether the sampling is one-shot or multi-shot. To focus on this
issue we first summarize how replicates have traditionally been used for the more
common problem of gene differential expression analysis, before turning to the use of
replicates for recovery of gene regulatory networks.

The following summarizes the use of replicates for gene differential expression
analysis. A recent survey [15] suggests a minimum of three replicates for RNA-seq
experiments whenever sample availability allows. Briggs et al. [16] studies the effect of
biological replication together with dye switching in microarray experiments and
recommends biological replication when precision in the measurements is desired. Liu et
al. [17] studies the tradeoff between biological replication and sequencing depth under a
sequencing budget limit in RNA-seq differential expression (DE) analysis. It proposes a
metric for cost effectiveness that suggests a sequencing depth of 10 million reads per
library of human breast cells and 2—6 biological replicates for optimal RNA-seq DE
design. Schurch et al. [18] studies the number of necessary biological replicates in

RNA-seq differential expression experiments on S. cerevisiae quantitatively with various

statistical tools and concludes with the usage of a minimum of six biological replicates.

The choice of replication strategy depends on how the statistical algorithm uses the
replicate data. In many differential analysis software packages replicates are treated as
independent samples with identical experimental conditions. For example, in edgeR [19]
and sleuth [20] the logarithm of the abundance of gene ¢ in sample m is assumed to be
xy, Bi, where x,,, is the column vector of design characteristics with respect to p variates
for sample m and (; the column vector of the associated effects of the p variates to gene

i. Replicate samples can then be used to expand the design matrix x with identical
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columns. Note that, as a result, replicates are not necessary for edgeR and sleuth 559
because samples with different design characteristics can all contribute to the estimation seo
of 8. It is then not clear whether it is better to have more replicates under the same 561
condition, or to have more conditions, for a fixed total number of samples. 562

For regulatory network reconstruction there is even less consensus on how replicates ses
should be used. One straightforward way is to reduce the replicates into a single set of ses
data by averaging either directly or after a random resampling of the original replicated ses
data. In this case the mean of the replicates are used as a better estimate of the 566
population than each single replicate, while higher moments of the empirical distribution sez
of the replicates are practically ignored. Another way adopted in [9] is to account for all  ses

four potential transitions between two replicates in two adjacent sampling times in their seo

machine learning algorithm due to the one-shot nature of the replicates. In the next 570
section, we illustrate why replicates should be used differently for one-shot and 571
multi-shot sampling, in the context of recovering a circadian clock network model. 572
A case study on Arabidopsis circadian clock network 573

As we have discussed earlier, the current expression datasets are prominently one-shot, sza
making a direct comparison between one-shot and multi-shot sampling in real biological s7s
data difficult. The lack of a well-accepted ground truth of the gene regulatory network sze
also makes performance evaluation hard, if not impossible. To test the applicability of sz
the sampling models on real biological data, we generate expression data from a 578
most-accepted Arabidopsis circadian clock model using stochastic differential equation — s7e
(SDE) model similar to GeneNetWeaver with condition-dependent Brownian motions,  sso
and evaluate the performance of BSLR. 581
To extend the sampling models in this paper to the more biologically plausible SDE
models, we model the individual and condition-dependent variations by independent
and coupled Brownian motions. Following the Arabidopsis clock network in [21], we let
genes 1, 2, 3, and 4 be LHY, TOC1, X and Y, and construct the following group of

SDEs (the dark condition in [21] is assumed here).

97 + (Zzl)f,t)a k1 + x’ft

k nl(Z§,t)a mlw’f,t
Ty =

T k T,Cl z k x,k
) dt + 00127 B 1 + 0pi 127 (dBy T 4

October 21, 2019 25/32



k
mayYy ¢

| dt
ko + Y1t

Eo_ k k k
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Here xﬁt, yé‘jt, and zﬁt denote the mRNA abundance, and cytoplasmic and nuclear
protein concentrations of gene ¢ at time ¢ in plant k. The B terms are independent
standard Brownian motions (Wiener processes). Note the linear diffusion terms
attenuate the Brownian motions as the processes get close to 0 and consequently keep
the processes nonnegative. Compared to the GLM analyzed in this paper, this SDE
model captures the nonlinearity of the regulatory interactions, the continuous-time
nature of the dynamics, and the detailed diffusion from mRNA to cytoplasmic and
nuclear protein. So the SDE model is much more complicated and considered a basic
version of the state-of-the-art circadian clock model (see [22,23]). Nevertheless, the SDE
model shares a property with the GLM that allows the gene regulatory interactions to
be summarized by a single signed directed graph: the effect of increasing the mRNA
abundance of one gene on that of another has a constant sign regardless of the mRNA
abundances and the protein concentrations of any genes. For example, the drift of x;
(mRNA of LHY) would have a tendency of increasing with an increased z3 (mRNA of
X) through the equations for y; (cytoplasmic protein of X) and z3 (nuclear protein of X)
regardless of the specific values of all the z’s, y’s and z’s. Fig. 8 shows the signed
directed graph for the SDE model of Locke network. Now we have a ground-truth
network based on the SDE model.

Fig 8. The signed directed graph for the Locke network.

We choose the parameters in the drift coefficients (the terms in front of the dt’s)
accordingly to the supplementary material of [21], where the authors optimized the
parameters to fit experimental results. We sample the SDE at times 0, 2, 4, 6, 8, and 10
for a single condition (C' = 1) with three replicates (R = 3), 0, = 0.3 and op; = 0.4,
and obtain the performance of BSLR in Table 2. The estimates and the errors are based
on 1000 simulations for each sampling method. Here the significance level of the
Granger causality test in BSLR is set to 0.5. Note a random guess would have

FDR = 0.75 and FNR + %FPR = 1. We see from Table 2 that BSLR without replicate

October 21, 2019

27/32

582

583

584

587

590

593

594

596

597

599

600

603

604

606

607



sampling method replicate averaging FDR FNR FPR

one-shot yes 0.71+£0.04 0.69+0.04 0.54+0.04
one-shot no 0.74+0.04 0.73+0.04 0.54+0.04
multi-shot yes 0.67+0.04 0.64+0.04 0.55+0.04
multi-shot no 0.59+0.04 0.55+£0.04 0.56=+0.04

Table 2. BSLR evaluation on Locke network. The errors are estimated using
Hoeffding’s inequality over 1000 simulations with significance level 0.05.

averaging on one-shot sampling data is no different from random guessing, while BSLR
with replicate averaging doing slightly better in FDR and FNR. This is because
replicate averaging of one-shot data practically increases the condition effect by
reducing the biological variation, and thus gets a better temporal correlation between
one-shot samples of adjacent times. BSLR performs better on multi-shot data compared
to one-shot data because the biological variations of the previous times also contribute
to the temporal correlation. In particular, BSLR without replicate averaging on the
multi-shot data has the best performance because it allows tracking the individual
replicates rather than merely tracking their averages. Although the performance
numbers appear far from ideal, this demonstrates remarkable improvement from BSLR
with replicate averaging on one-shot data to BSLR without replicate averaging on
multi-shot data, especially considering the highly nonlinear SDE model, the unobserved
protein concentrations levels, the very limited number of 18 samples (3 replicates with 6
times) and the fact that BSLR does not use any knowledge of the (around 60)
parameters or the form of the equations, highlighting the difference in the statistical
power of one-shot and multi-shot data and its implication in downstream statistical
analysis decisions (replicate averaging vs. no replicate averaging).

In summary, we demonstrated a setting of the biologically plausible Arabidopsis
circadian clock network with a single condition, where the BSLR performs similarly to a
random guessing algorithm under one-shot sampling, and performs significantly better
under multi-shot sampling. We also show that whether replicate averaging should be

done or not varies with the sampling method.
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Conclusions

One-shot sampling can miss a lot of potentially useful correlation information. Often
gene expression data collected from plants is prepared under one-shot sampling. One
factor that can partially mitigate the shortcomings of one-shot sampling is to prepare
samples under a variety of conditions or perturbations. One-shot samples grown under
the same condition can then be thought of as a surrogate for the multi-shot samples of
an individual plant.

To clarify issues and take a step towards quantifying them, we proposed a gene
expression dynamic model for gene regulatory network reconstruction that explicitly
captures the condition variation effect. We show analytically and numerically the
performance of two algorithms for single-gene and multi-gene settings. We also
demonstrate the difficulty of network reconstruction without condition variation effect.

There is little agreement across the biology literature about how to model the
impact of condition on the gene regulatory network. In some cases, it is not even clear
that we are observing the same network structure as conditions vary. Nevertheless, our
results suggest that the preparation of samples under different conditions can partially

compensate for the shortcomings of one-shot sampling.

Supporting information

S1 Appendix. Joint estimation for single-gene autoregulation recovery.

The parameters A, 7, o, and oy are assumed unknown and jointly estimated in GLRT.

S2 Appendix. Split Gaussian network prior. The random network prior

distribution used to generate the multi-gene network.
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